Department of Computing, Library and Information Technology [CLIT] collections
Permanent URI for this collectionhttp://localhost:4000/handle/20.500.12284/150
Browse
Browsing Department of Computing, Library and Information Technology [CLIT] collections by Author "Santhi, Kumaran"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Fuzzy Based Prediction Model for Air Quality Monitoring for Kampala City in East Africa(MDPI, 2021-07-19) Calorine, Katushabe; Santhi, Kumaran; Emmanuel, Masabo: The quality of air affects lives and the environment at large. Poor air quality has claimed many lives and distorted the environment across the globe, and much more severely in African countries where air quality monitoring systems are scarce or even do not exist. Here in Africa, dirty air is brought about by the growth in industrialization, urbanization, flights, and road traffic. Air pollution remains such a silent killer, especially in Africa, and if not dealt with, it will continue to lead to health issues, such as heart conditions, stroke, and chronic respiratory organ unwellness, which later result in death. In this paper, the Kampala Air Quality Index prediction model based on the fuzzy logic inference system was designed to determine the air quality for Kampala city, according to the air pollutant concentrations (nitrogen dioxide, sulphur dioxide and fine particulate matter 2.5). It is observed that fuzzy logic algorithms are capable of determining the air quality index and therefore, can be used to predict and estimate the air quality index in real time, based on the given air pollutant concentrations. Hence, this can reduce the effects of air pollution on both humans and the environment.Item Internet of things based visualisation of effect of air pollution on the lungs using HEPA filters air cleaner(Heliyon, 2023) Calorine, Katushabe; Santhi, Kumaran; Emmanuel, MasaboThe impact of air quality on human health and the environment is very significant, with poor air quality being responsible for numerous deaths and environmental damage worldwide. Whereas a number of studies have been done to monitor the quality of air with help of emerging technologies, little has been done to visualize its effect on health particularly on the lungs. The study explores an approach that combines Internet of Things (IoT) technology with High Efficiency Particulate Air (HEPA) filters air cleaner to monitor and visualize the effects of air pollution on lung health, highlighting the significant damage that poor air quality causes particularly on the lungs graphically. To achieve this, a 3D display of the lungs is modelled using HEPA filters, which changes colour based on the air pollutant concentrations detected by IoT based sensors. The collected air quality data is then transmitted to Thingspeak, a visualization platform for further analysis. It is observed that the colour of the 3D lung display changed to black over time as air pollutant concentrations increased which in our study is an indicator of unhealthy lung. The study presents an innovative approach to visualize the effects of air pollution on lung health using IoT and HEPA filters air cleaner, which could have significant implications for public health policies aimed at mitigating the harmful effects of air pollution, particularly on lung health