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Abstract 
Ion-acoustic solitary (IAS) waves in electron-positron-ion (e-p-i) plasma have 
been of interest to many researchers probably due to their relevance in under-
standing the Universe. However, the study of non-linear ion-acoustic waves in 
e-p-i plasma with non-thermal electrons has not been adequately studied. A 
theoretical investigation on non-linear IAS waves in e-p-i plasma comprising 
of warm inertial adiabatic fluid ions and electrons that are kappa distributed, 
and Boltzman distributed positron is presented here using the Sagdeev poten-
tial technique. It was found that existence domains of finite amplitude IAS 
waves were confined within the limits of minimum and maximum Mach 
numbers with varying κ  values. For lower values of κ , the amplitude of the 
solitary electrostatic potential structures increased as the width decreased, 
while for high values, the potential amplitude decreased as the width of the 
solitary structure increased. 
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1. Introduction 

The electron-positron (e-p) plasmas have frequent occurrence in the Universe 
[1]. The inclusion of an ion in an e-p forms an e-p-i plasma. These e-p-i plasma 
are ubiquitious in astronomical environments. In such situations, positrons 
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drastically change the behaviour of non-linear waves and it is for this reason that 
they have attracted the attention of several authors [2] [3] [4] [5]. 

Large amplitude ion-acoustic waves in e-p-i plasma were studied by [2], using 
the Sagdeev potential technique. Their results showed that the larger the relative 
positron density, the lower the Mach number for a soliton of fixed amplitude to 
propagate. Later, [3], studied the effect of the ion temperature on large amplitude 
ion-acoustic waves in e-p-i plasma consisting of Boltzmann distributed posi- 
trons. He found that the ion temperature increased the maximum Mach number 
and decreased the amplitude of ion-acoustic waves. Furthermore, in studying 
non-linear acoustic excitations in e-p-i plasma, [4] studied the accretion disks of 
active galactic nuclei, where the ion temperatures were much higher than those 
of electrons and positrons. Due to very high ion temperatures in accretion disks, 
the ions were modeled using the Boltzmann distribution, whereas the electrons 
and positrons were governed by the fluid equations. Most research work about 
e-p-i plasmas have treated electrons as being Boltzmann distributed species 
thereby, leaving kappa distributed electrons not adequately studied. 

The kappa κ  distribution function possesses the desired property that the 
particles with velocities greater than the thermal velocity obey a power law 
distribution and gives better fits to real space plasma [6]. The family of isotropic 
generalised Lorentzian or κ -distributions takes the form [7]:  
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where 0eN  is the unperturbed equilibrium electron density, θ  is the most 
probable speed of the particle species related to the usual thermal velocity,  
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; T being the characteristic kinetic tempera-  

ture, i.e., the temperature of equivalent Maxwellian distribution with same average 
kinetic energy; BK  is Boltzmann’s constant, Γ  is the usual gamma function, 
and κ  is the spectral index that determines the hardness of the energy 
spectrum corresponding to the presence of excess suprathermal particles in the 
tail of the distribution function [8]. In the limiting case, when κ →∞  (e.g 

10κ = ), the distribution function approaches the familiar Maxwellian form 
(Figure 1). Low values of κ  represent distributions with relatively large com- 
ponent of particles with speeds greater than the thermal speed (“superthermal 
particles”) and an associated reduction in “thermal” particles, as one observes in 
a “hard” spectrum [9]. 

Apart from kappa distributed electrons, electron populations can suit other 
non-thermal distributions eg. Cairn’s distribution [10]. Recently, [5], used 
Cairn’s distributed electrons in an e-p-i plasma and [11] applied the distribution 
on a 4-component complex dusty plasma. In both cases, solitons of both 
polarities were found to exist. However, for a κ  distributed electron population,  
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Figure 1. Comparision of generalised Lorentzian 
distribution for the spectral index κ = 2, 5, 10, and κ = 
∞ (corresponding to Maxwellian distribution). 

 
solitons of both polarities may not arise. Therefore, this study investigated the 
effect of using κ  distributed electrons in an e-p-i plasma. 

This paper is therefore structured with the following sections: A brief intro- 
duction, description of the model, discussion of results and finally we present a 
conclusion. 

2. Description of Plasma Model 

We considered a simple three species unmagnetised and collisionless plasma 
model whose electrons are kappa-distributed. The other species are warm 
inertial adiabatic fluid ions and Boltzmann-distributed positrons, thereby 
referred to as an e-p-i plasma. The electrons, positrons, and ions are considered 
to have temperatures ,e pT T  and iT  respectively. Again, the electrons, ions, 
and positrons are assumed have densities of ,e pN N  and iN  respectively. 

The charge equilibrium equation for the system when electrostatic potential, 
0ϕ =  is given by  

1 ,pf f= −                           (2) 

where 0

0

i

e

Nf
N

=  is the ratio of equilibrium number density of ions to electrons, 

0

0

p
p

e

N
f

N
=  is the ratio of equilibrium number density of positrons to electrons. 

Integrating the adopted kappa distribution Equation (1), the velocity space 
gives the unnormalised electron number density as  
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It can be noted that Equation (3) is only valid for 3
2

κ > , and kappa distribu-  

tions reduce to Maxiwellian distributions, when κ →∞  [12], while for low 
values of κ , “hard” spectrum with strong non-Maxiwellian tail following a 
power-law at high speeds are obtained [7]. Normalizing by appropriate scaling 
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quantities, the electron number density is obtained in dimensionless form as  
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where en  is particle density and the electrostatic potential φ  are scaled as  
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The positrons follow the Boltzmann distribution given as,  
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Normalising with respect to 0eN , the number density for positrons may be 
written in a dimensionless form as  
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For ions, the density is obtained from the fluid equations. These are continuity, 
pressure, and momentum equations written respectively as follows:  
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where, V  and iP  are the un-normalized ion fluid speed and ion thermal 
pressure respectively; ( )i im q  is the ion mass (charge), and ( ) X t′ ′  is the 
un-normalized space (time) variable. 

This system of Equations (7)-(9) are normalized by introducing dimensionless  

quantities ( , , , ,i i ix t n u p  and φ ) such that; 
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plasma frequency with im  and e the ion mass and electronic charge respectively. 
The normalised equations are obtained as:  
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In transforming to the stationary frame, the solution of nonlinear equations of 
a wave depends on x and t through the variable x Mtξ = − . Here M is the Mach 
number (normalized by the phase speed of the ion-acoustic waves). Thus,  

M
tξ

∂ ∂
= −

∂ ∂
 and 

xξ
∂ ∂

=
∂ ∂

. We can now integrate Equations (10)-(12) applying  

boundary conditions as ξ → ∞ ; , i iu p  and 0φ → , and eliminating iu  
between the three expressions to obtain the ion density equation as,  
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where ( )2
3 iA M σ+ = +  and ( )2

3 iA M σ− = − . 
It is easy to show from Equation (13) that for ( )2

3 iM σ> , the negative sign 
is used and for ( )2

3 iM σ< , the positive is used. The negative sign corre- 
sponds to supersonic species [13]. The negative sign satisfies the boundary 
condition of 1in →  with 0φ →  as ξ → ±∞ . As a result, the ion density is 
obtained as  
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Equation (4), (6) and (14) are coupled by Poisson’s equation,  
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where 0ε  is permittivity of free space and iq e=  (for ions), pq e=  (for 
positrons) and eq e= −  (for electrons). Normalising with 0eN , gives  
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In the stationary frame,  
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Substituting Equations (4), (6) and (14) into Equation (16), and integrating 
with respect to φ , the usual energy equation [14] is obtained as  
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1 d , 0,
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S Mφ φ
ξ
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                  (19) 

where ( ),S Mφ  represents a potential well with φ  playing the role of “coor- 
dinate” (pseudoposition) and ξ  represents the role of “time”. From Equation 
(18) and Equation (19) the Sagdeev potential or pseudopotential is obtained as  
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3. Results 
3.1. Theoretical Analysis 

The derived Sagdeev potential, ( ),S Mφ  is vital in finding the existence 
domains of IAS waves. For solitary waves to propagate in an e-p-i plasma, 
Sagdeev potential, ( ),S Mφ  and its derivatives with respect to φ  must satisfy 
the following conditions [15]. 

1) ( ) ( )0, 0 0, 0S M S Mφ φ′= = = = =  at the origin ( )0φ = . 
2) ( )0, 0,S Mφ′′ = <  such that the origin is unstable i.e., ( )φ  has maximum 

at origin.  
3) ( ), 0mS Mφ =  and ( ) 0S φ <  for 0 mφ φ< < . i.e., mφ  for positive root 

(positive potential) and mφ  for negative root (negative potential). The primes 
represent derivatives of ( ),S Mφ  with respect to φ . 

Clearly, from Equation (20), ( ),S Mφ  and its derivative with respect to φ  
vanish at 0,φ =  hence condition (1) is satisfied. The origin at 0φ =  thus 
defines the equilibrium state, which represents a local maximum of ( ),S Mφ . 

The requirement, ( )0, 0,sS Mφ′′ = =  yields  

1
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p
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where sM  is the lower Mach number limit below which no soliton can exist. 
For ( )0, 0,sS Mφ′′ = <  Equation (21) becomes  

1
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which inequality is part of the soliton (existence) condition to be fulfilled as  

( )

1
21 2 13 ,

1 2 3s iM
f

κσ
τ κ

 − > + +  − −  
               (23) 

i.e., using the charge neutrality condition in Equation (2). For the fixed value of 
κ , solitons may exist only for values of the Mach number satisfying  

.sM M>                          (24) 

This is on the basis of investigations by [13] [15] who showed that the existence 
of solitons required sM M> . This implies that solitons can have finite 
amplitudes at sM  in the region where solitons with both polarity exit. For 



S. K. Anguma et al. 
 

898 

κ →∞ , 0iσ =  and 1,τ =  Equation (23) reduces to the familiar expression  

2 1 .
1sM

f
>

−
                       (25) 

It follows that if Equation (24) is the “true” Mach number, the structures 
would be truly supersonic. 

Figure 2(a) shows the necessary minimum Mach number for the existence 
domains of solitary structures. For the three component plasma, Figure 2(a), 
shows that there are two acoustic existence ranges for the solitary waves i.e., 
between 0.0221485sM = , before the thermal velocity and 0.510656sM =  
after the thermal velocity. Therefore, 0.510656sM =  is the minimum Mach 
number limit below which no solitary waves exist for this current model. For the 
case of this study, solitons with positive polarity are limited by infinite 
compression of the inertial ions. This is achieved when  

( )2

1
1 3
2i iMφ φ σ→ = − , leading to a sufficient condition, ( )1, 0iS Mφ > . After  

finding the minimum Mach number, sM , for the nonlinear solitary structures, 
the maximum Mach number, uM  was found using Equation (14). Another  

limiting potential was obtained to be ( )2

2
1 3 .
2i iMφ σ= +  

Both 1iφ φ>  and 2iφ φ>  yields a complex in . Therefore, 1iφ φ>  and 

2iφ φ>  are the practical constraints limiting positive potential solitons, under 
the condition ( )1 0iS φ φ≥ >  and ( )2 0iS φ φ= > . The critical limiting potential 

max 2iφ φ= , since 2 1i iφ φ<  for all M and f. Therefore, the requirement  
( )max , 0uS Mφ =  leads to the upper limit on M as 0.631122uM =  for the 

existence of positive solitons (see Figure 2(b)). In this case of a three component 
plasma model, the solution for the existence domains exist in the range  
0.510656 0.631122uM< < . 

3.2. Numerical Analysis 

Numerical solutions of the existence domains supported by the plasma model  
 

 
(a)                                                         (b) 

Figure 2. (a) A graph showing ( )S φ′′  against M for the existence domains in an e-p-i plasma. (b) A graph showing ( )S φ  

against M for the existence domains in a three component plasma. 
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consisting of three species were obtained using the Sagdeev potential in Equation 
(20).  

3.2.1. Existence Diagrams 
Figure 3(a) shows the existence domains for solitons in parameter space of 
maximum and minimum Mach numbers for a plasma with electrons having the  

same temperature as positrons, i.e., 1e

p

T
T

τ = = . Positive solitons at different  

values of κ  (i.e., 3κ =  are indicated by blue dots, 7κ = , by red thick line,  

and 100κ =  by black dashed line where 1
100

i
i

e

T
T

σ = =  and 0.1pf = . It can  

clearly be seen that the existence domains of finite amplitude ion acoustic 
solitary waves are confined within the limits of Mach number given by Equation 
(23) and (24), respectively. For the values of κ  used, the positive potential 
solitons exist for the full range ( 0 1pf< < ) of the density ratio. For this case, the 
existence domain increased with increase in κ . 

Figure 3(b) shows numbers, M plotted against the electron-positron tempera- 
ture ratio, τ  for various values of ion-to-electron temperature ratio ( 0.01iσ =  
plotted in blue dots, 0.03iσ =  in red thick line, and 0.05iσ =  in black dashes) 
where 3κ = , 1τ =  and 0.5pf = . Finally, it was observed that increasing the 
electron-positron (e-p) temperature ratio, τ  increased the Mach number of the 
solitary wave. It is predictable that when temperature ratio, iσ  is increased, a 
corresponding increase in the existence domains of the finite amplitude ion 
acoustic solitary waves is obtained. Having discused the existence domains of 
IAS waves in an e-p-i plasma, the effects of kappa distributed electrons and 
inertial warm ions on propagation of IAS waves is discussed next. 
 

 
(a)                                                         (b) 

Figure 3. (a) The Mach numbers, M against the positron-to-electon density ratio pf  for different values of non-thermal parameter 

κ . (b) The Mach numbers, M versus the electron-to-positron temperature ratio, τ  for various values of iσ . 
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3.2.2. Effect of Kappa Distributed Electrons 
Figure 4(a) shows the variation of the Sagdeev potential, ( )S φ  with φ  for a 
fixed Mach number, 0.62M = , and various values of κ  ranging from 3 (in 
purple dots) to 10 (red thick line). Different values of κ  were used to examine 
the one that would give a better fit to the kappa distribution. It is clearly 
observed that for a lower value of κ , the amplitude of the solitary electrostatic 
potential structures increased from 0.04 for 10κ = , to 0.10 for 3κ = . Hence, 
for a fixed M, a decrease in κ  causes an increase in the true sound speed. Thus, 
it follows that a decrease in κ  leads to larger solitons, as shown in Figure 4(a). 
Furthermore, the depth of the Sagdeev potential increased from 0.0001 to 0.0015 
over the range ( 3 10κ< < ). Thus, the soliton profile increased as the non- 
thermal component was increased. When the amplitude increased, it resulted 
into the soliton profile, which become a bit steeper. Figure 4(b) is a plot of 
( )φ ξ  against ξ  showing the bell shaped electrostatic potential. It is clearly 

seen that for lower values of κ , say 3κ = , the potential amplitude increased as 
the width decreased, while for high values ( 5κ = ), the potential amplitude 
decreased as the width of the solitary structures increased. 

3.2.3. Effect of Inertial Warm Ions 
Figure 5(a) showed the variation of Sagdeev potential, ( )S φ  with φ  for a 
fixed M (0.60), 3κ = , and various values of iσ , ranging from 0.015iσ =  
(thick) to 0.025iσ =  (black thick line) of solitary electrostatics potential 
structure. When the different values of ion-to-electron temperature rations, iσ  
were reduced from 0.025 to 0.015 and the potential increased from 0.0378 to 
0.06436, particle trapping was exhibited, which implied the formation of 
solitons. Thus, for fixed M and κ , a decrease in iσ  resulted into high 
amplitude solitons. Again, Figure 5(a) showed that the depth of Sagdeev 
potential increased from 0.00005786 to 0.000265. This implied that solitons 
exists with potential wells of ( )φ ξ  profiles at different depths. In non-thermal  
 

 
(a)      (b) 

Figure 4. (a) Variation of ( )S φ  against φ  for 0.62M = , 0.5pf = , 1τ = , 0.01iσ =  and various values of kappa: 3κ =  

(purple dots), 4κ =  (green dashes), 5κ =  (black dots), 10κ =  (red thick line). (b) Arbitrary amplitude ion acoustic pulses, 
( )φ ξ  against ξ  for different values of κ : 0.60M = , 0.5pf = , 0.01iσ = , 1τ = , and 3κ =  (black thick line), 4κ =  (blue 

dots), and 5κ =  (green thick line). 
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(a)                                                          (b) 

Figure 5. (a) Variation of ( )S φ  against φ  for 0.60M = , 0.5pf = , 3κ = , 1τ =  and various values of iσ : 0.015iσ =  (red 

thick curve), 0.020iσ =  (green dotted curve), and 0.025iσ =  (black thick curve). (b) Arbitrary amplitude of ion acoustic 

pulses, ( )φ ξ  against ξ  for various values of ion-to-electron temperature ratio iσ : 0.60M = , 0.5pf = , 3κ = , 1τ = , and 

0.015iσ =  (red thick line), 0.020iσ =  (green dots), and 0.025iσ =  (black thick line). 

 
environment, plasma formation is more likely and amplitude of the soliton is 
maximum because of greater depth. 

In Figure 5(b), the electrostatic potential, ( )φ ξ  is plotted against ξ , for 
varying iσ  values. Only bell shaped electrostatic potentials are obtained. The 
potential amplitude increased as ion-to-electron temperature ratio, iσ  decreased. 
However, the width of the solitary structures increased with increasing ion-to- 
electron temperature ratio, iσ . Furthermore, it is shown that the potential 
amplitude ( )φ ξ , in the non-thermal case was higher for smaller value of 

0.015iσ = , but this trend became weaker for bigger values, say 0.025iσ = . It 
was noted that the effect of iσ  on the amplitude of the solitary waves was 
weaker for non-thermal case when 0.020iσ >  as shown by the black thick 
curve and green dotted curve in Figure 5(b). In conclusion, the effects of ion 
temperature ratio iσ  on the properties of the new solitary wave are more 
pronounced for smaller iσ . 

4. Conclusion 

The study findings show a fully non-linear ion acoustic solitary wave in e-p-i 
plasma with three species (i.e., warm inertial adiabatic ion fluid, kappa- 
distributed electrons, and Boltzmann-distributed positrons). The existence of 
large amplitude ion acoustic solitons of positive electrostatic potential was 
obtained. Numerical solution of the energy integral equation showed that 
positive solitary waves existed with a property of having faster pulses with taller 
and slender amplitudes. Furthermore, increasing the non-thermal parameter κ , 
it was found that the amplitudes of ion acoustic solitons were reduced when a 
significant fraction of positrons is present in the plasma. This implied that the 
positron component hindered the propagation speed of the solitons. These 
results are capable of enhancing the understanding of non-linear structures in 
e-p-i plasmas found in certain astronomical environments containing non- 
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thermal electrons as a component. 
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