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Abstract: The quality of air affects lives and the environment at large. Poor air quality has claimed
many lives and distorted the environment across the globe, and much more severely in African
countries where air quality monitoring systems are scarce or even do not exist. Here in Africa, dirty
air is brought about by the growth in industrialization, urbanization, flights, and road traffic. Air
pollution remains such a silent killer, especially in Africa, and if not dealt with, it will continue to lead
to health issues, such as heart conditions, stroke, and chronic respiratory organ unwellness, which
later result in death. In this paper, the Kampala Air Quality Index prediction model based on the
fuzzy logic inference system was designed to determine the air quality for Kampala city, according
to the air pollutant concentrations (nitrogen dioxide, sulphur dioxide and fine particulate matter
2.5). It is observed that fuzzy logic algorithms are capable of determining the air quality index and
therefore, can be used to predict and estimate the air quality index in real time, based on the given
air pollutant concentrations. Hence, this can reduce the effects of air pollution on both humans
and the environment.

Keywords: air pollution; fuzzy logic; Kampala Air Quality Index

1. Introduction

Various cities that are industrialized and developing across the globe greatly suffer
from contaminated air for the greater part of the year [1]. Dirty air has great impact
globally and locally; if not paid attention to, it can become a threat to all living things,
especially to humans. From the authors of [2–4], many countries in Africa have attained
decades of industrialization and development but without a proper plan to handle the air
pollution problem.

Many developed countries have tried to make use of current booming technologies
to determine strategies and methods to improve air quality and, in the long run, mitigate
the issue of air pollution but most countries in Africa still lack air pollution monitoring
systems and do not have management strategies in place [5–7].

There is a great need to pay attention to air pollution concerns in Africa where urban-
ization and industrialization continue to increase with the increasing population density.
This paper focuses on the geographical area of Kampala City in Uganda East African region
where the population numbers keep increasing higher every year. Moreover, industries are
being opened and also a big number of second-hand vehicles and motorcycles, which are
the major sources of transport, enter into the city at higher rates annually [8].
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According to the Air Visual’s World Air Quality Report, Kampala city is among the
cities with the most polluted air in Africa [9]. Air pollution has a great effect on health,
alone causing millions of hospitalizations every year.

Major sources of air pollution in Kampala city include dust from unpaved roads and
open burning of waste by individuals as a way of managing uncollected waste, which
introduces dangerously large amounts of pollutants into the air via combustion. There are
also massive amounts of dirty air coming from many factories and power plants around
the Kampala area [10,11].

Another big contributing source of air pollution is vehicular emissions coming from
many imported second-hand vehicles; the Uganda National Environment Management
Authority (NEMA) estimates that more than 140,000 litres of fuel are burnt by idling cars
every day in Kampala city because of ever-growing road traffic [12].

A report compiled by Global Burden of Disease project indicates that exposure to
dirty air is the fifth highest ranking risk issue for death, answerable for 4.2 million deaths
from heart condition and stroke, carcinoma, chronic respiratory organ unwellness, and
metabolic process infections; conjointly, an extra 254,000 deaths were owing to exposure to
gas and its impact on chronic respiratory organ disease around the world. In Africa alone,
there was an estimated one million deaths [13].

Therefore, it’s a very important health factor to measure the quality of air. Information
on air quality concentrations in a particular region and its health effects is usually presented
via the Air Quality Index (AQI). The AQI presents air quality concentrations in a more
understandable form to the public. It is a public information tool designed to help indi-
viduals in a particular society understand the effects of air quality on both health and the
environment; it is a generalized way of describing the quality of air around the universe.

In this paper, the AQI is based on Kampala standards for air quality, which follow
the Environmental Protection Agency (EPA) standards [14]. The values of the Kampala
Air Quality Index are divided into six groups: good, moderate, unhealthy for sensitive
groups, unhealthy, very unhealthy, and hazardous. Different colors are assigned to each
group. Thus, in this paper, the AQI prediction model for Kampala city is designed using
the fuzzy logic inference system. In predicting the quality of air, traditional methods, such
as clustering analysis, regression analysis and variance analysis, have been greatly used
but these methods do not give the desired measurements in predicting the air quality,
due to the non-linear relationship between pollutant datasets. The methods that were
used in [15] included the use of an impinge air quality testing apparatus, which is very
expensive and requires a huge budget, which makes it heavy and difficult for developing
countries governments to fund [10]. The other approach is that samples of fine particulate
matter (2.5) is collected at the end of each sampling period, stored in plastic petri dishes,
sealed, and transferred to the U.S.A. for analysis.

Therefore, in this paper, a fuzzy based prediction model for predicting AQI based on
the air pollutant concentrations in Kampala city is designed in order to provide the public
with information about the quality of air and also the responsible authorities to take the
precautions and decisions from an informed point of view of the levels of air pollutants.
Fuzzy logic modeling is known to give accurate results in solving non-linear problems.

1.1. Main Air Pollutants

The AQI of Kampala is measured, following the three air pollutant concentrations in
Kampala: nitrogen dioxide (NO2), sulphur dioxide (SO2) and particulate matter (PM2.5)
based on the 24 h average of hourly readings.
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1.1.1. Nitrogen Dioxide

NO2 is mainly produced in internal combustion engines burning fossil fuels, such as
cars, power plants and house heaters. Direct exposure to the skin or eyes can cause irritation
to the throat and nose, and it also burns. Long-term exposure to relatively low levels of
nitrogen dioxide is believed to cause bronchitis and asthma, especially in children [16].
Kampala has thousands of taxis, basically used for public transport as a major means of
transportation around the city.

1.1.2. Sulphur Dioxide

SO2 is emitted through the burning of fossil fuels (for vehicles, heating, and power
generation) and processing of ores containing sulphur. Exposure to SO2 causes irritation of
the eyes and lungs, causing coughing and aggravation of chronic bronchitis and asthma.
Higher SO2 levels are correlated with mortality from cardiac diseases [17].

Kampala city has a high number of vehicle growth and most of them are old fleets
driven with dirty fuel on a poorly planned public transport system and road network [18].

1.1.3. Particulate Matter (PM)

PM refers to a type of air pollutants which consist of a complex mixture of particles
suspended in the air, with various sizes and compositions. They are produced by both nat-
ural and anthropogenic activities. The main sources of particulate pollution are industrial
activities, power plants, motor vehicles, construction activity, fires and natural windblown
dust. The major industries in Kampala include the following: sugar, brewing, tobacco, cot-
ton textiles, cement and steel production [19]. PM mass concentration is typically tracked
as both PM10, the total mass of PM with a diameter of 10 micrometres or less, and PM2.5,
the total mass of PM with a diameter of 2.5 micrometers or below (and a subset of PM10).
This paper concentrated mainly on PM2.5, nitrogen dioxide and sulphur dioxide.

2. Materials and Methods

In this study, a simulation based on fuzzy logic techniques embedded within the
MATLAB version R2017b software simulation environment was applied. In order to
simulate the proposed model, the MATLAB Fuzzy Logic toolbox was used. Then, the fuzzy
prediction model was modeled and its performance behavior was observed, using a set of
three input parameters: indices of PM2.5, indices of SO2 and indices of NO2. The estimated
Kampala Air Quality Index (KAQI) was considered as the output parameter. In order to
process the fuzzy logic model, a rule-based Mamdani’s fuzzy inference system was used
and later, defuzzification processes followed.

2.1. Fuzzy Modeling Approach
2.1.1. Description of Fuzzy Logic

In traditional logic, the degree of truth can be represented by either the values of 1
(true) or 0 (false), but this has limitations because some elements’ membership is unclear,
thereby rendering traditional methods incapable of handling complex environmental
problems that have some kind of vagueness in them. In a crisp set, an element is either
a member of the set or not, but also crisp elements can belong to more than one set, for
example, height measurements. Therefore, fuzzy logic comes in to cater to fuzziness in
solving real-life problems. In fuzzy logic, the degree of truth ranges between 0 and 1, both
inclusive. Fuzzy sets allow elements to be partially in a set.
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Fuzzy logic helps to compute linguistic variables, that is, variables whose values
are not numbers but words or sentences in natural or artificial languages as proposed by
Dr. Loft Zadeh of the University of California in the 1960s [20]. According to Banks [21],
fuzzy logic can efficiently handle soft computing complex issues. Its techniques have
been widely applied in all aspects of today’s society, such as industrial manufacturing,
diagnosis, automation control, academic education and forecasting. A linguistic variable is
a collection of five things represented as <T(x), U, G, M> where

x is a variable name
T(x) is a set of terms;
U is universe of discourse;
G is set of syntax rules;
M is a set of semantic rules.

Fuzzy logic works well in designing non-linear complex control solutions with multi-
ple parameters because of the following [22]:

• Fuzzy logic has the ability to describe systems in terms of a combination of numeric
and linguistic means.

• Fuzzy logic measures the certainty or uncertainty of the membership of an element of
the set.

• Fuzzy algorithms are often robust in the sense that they are not very sensitive to
changing environments and erroneous or forgotten rules.

In the other words, the fuzzy logic method shows the satisfactory value of air pollu-
tants in a continuous value between 0 and 1. Fuzzy logic uses if–then implication reference
rules with suitable linguistic description rules. A fuzzy rule is written as if situation, then
conclusion [23]. In this case, the situation is also called rule premise or antecedent. The
conclusion part is called consequence or conclusion, that is, IF the “antecedent” is satisfied,
THEN the “consequent” is inferred.

Therefore, the designed rules are inferred, according to the fuzzy inference knowledge
base to generate a generic, fuzzy based algorithm. Then, the model designed as the output
represents the fuzzy function to predict the Air Quality Index for Kampala city.

2.1.2. The Proposed Fuzzy Logic Control Model

The proposed prediction model is based on fuzzy control model reasoning to predict
the Kampala Air Quality Index as a percentage of the given air pollutant status. For the
simulations, we used MATLAB R2017b, an environment where the fuzzy toolbox logic
controller is embedded.

The fuzzy control model is designed predict the KAQI based on a set of predefined
parameters, which include NO2, SO2 and PM2.5.

To build the fuzzy logic system, the principle steps are followed as shown in Figure 1.
The design steps included during design are as follows: defining the input variables,
fuzzyfication, formulation of fuzzy inference rules, defuzzification and model evalutation.
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Figure 1. Main components of fuzzy model designed.

2.2. Defining the Input Variables and Fuzzyfication of the Values

In this paper, the KAQI model is designed on the basis of concentration levels of
pollutants based on the Environmental Protection Agency air quality index guidelines.

As shown in Figure 2, AQI ranges from 0 to 500 and is divided into five levels: good,
0–50; moderate, 51–100; unhealthy for sensitive groups, 101–150; unhealthy, 151–200; very
unhealthy, 201–300; and hazardous, 301–500.

The higher the AQI value, the poorer the quality of air; the lower the AQI value, the
better the quality of air. The three input crisp parameters used to define air quality in this
paper include the following: nitrogen dioxide (NO2), sulphur dioxide (SO2) and particulate
matter (PM2.5). The output of the system is taken as KAQI. The inputs are taken in the
form of linguistic variables as well as the output.
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Figure 2. Air Quality Index guidelines [24].

2.2.1. Selection of Membership Functions

A membership function (MF) is a function that specifies the degree to which a given
input belongs to a set [25]. The output of a membership function is also known as the
degree of the membership function, where its value is always limited to between 0 and 1.
Membership functions are used in the fuzzification and defuzzification processes to map
the non-fuzzy input values to fuzzy linguistic terms and vice versa.

The Mamdani Fuzzy Logic Toolbox has many inbuilt membership functions.
In this paper, the triangular membership function, known as (trimf), is applied in the

design of the proposed fuzzy based prediction model. The triangular membership function
is computationally efficient and is used to normalize crisp inputs.

The Mamdani Fuzzy Inference System is suitable for designing AQI prediction models,
as both the inputs and outputs of the Fuzzy Inference Systems are represented by the values
of linguistic variables [26]. In order to transform crisp input values into fuzzy values, the
membership function for each input is determined.

The corresponding fuzzy membership values in this paper are defined as follows:

The intensity of nitrogen dioxide (∆NO2) = Low, Medium and High
The intensity of sulphur dioxide (∆SO2) = Low, Medium and High
The intensity of particulate matter 2.5 (∆PM2.5) = Low, Medium and High

The KAQI is defined and estimated as the output by the following membership values:
good, moderate, sensitive, unhealthy, very unhealthy, hazardous.

2.2.2. Formulation of Fuzzy Rules

In fuzzy logic, rules play an important role. They determine the input and output
membership functions that are later used in inference process. They are represented by a
generic form of if–then. A fuzzy rule maps a condition described by linguistic variables
and fuzzy sets to a desired output.

To design the model, the boundary values of the universal sets for the input and
output variables are determined.

The fuzzy sets to be defined in universes for the fuzzification process are identified. As
shown in Table 1, the boundary values of universal sets are set. Each variable is represented
by three different fuzzy sets, ’Low’, ’Medium’, and ’High’ in these universes [27].
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Table 1. The boundary values of the air quality pollutants.

Index Class AQI NO2 (ppb) SO2 (ppb) PM2.5 (µg/m3)

Good 0–50 0–53 0–35 0–12.0
Moderate 51–100 54–100 36–75 12.1–35.4
Sensitive 101–150 101–360 76–185 35.5–55.4
Unhealthy 151–200 361–649 186–304 55.5–150.4
Very Unhealthy 201–300 650–1249 305–604 150.5–250.4
Hazardous 301–500 1250–2049 605–1004 250.5–500.4

In order to determine the boundary values for ’Low’, ’Medium’ and ’High’ fuzzy
sets, the corresponding boundary values of the sets are defined in the form of ’Good’,
’Moderate-Sensitive’, ’Unhealthy-Very-Unhealthy-Hazardous’ and fuzzy set values are
defined based on the lower and upper boundary values for the universal sets.
In this work, the values are defined following the boundaries indicated by the Environ-
mental Protection Agency (EPA) standards [14].

EPA is an international agency that prescribes standards and guidelines relating to air
pollution as elaborated in Figure 2 [28].

Table 2 shows the boundary values of universal sets and fuzzy sets NO2, SO2, and
PM2.5 input variables. The membership functions for the input variables fuzzy sets are
defined basing on the boundary values.

Table 2. The boundary values of crisp sets and fuzzy sets for input parameters, domain ranges, universe of discourse
membership function.

Crisp Input Variables Fuzzy Input Parameters Boundary Values for Universal Sets Universe of Discourse for MFs

NO2 (ppb) Low, Medium, High 0–2049 0–53, 54–360, 361–2049
SO2 (ppb) Low, Medium, High 0–1004 0–75, 76–304, 305–1004
PM2.5 (µg/m3) Low, Medium, High 0–500.4 0–12.0, 12.1–55.4, 55.5–500.4

The selected output variable is KAQI and is represented by the six fuzzy sets, ’Good’,
’Moderate’, ’Sensitive’, ’Unhealthy’, ’Very Unhealthy’ and ’Hazardous’. The boundary
values of these output fuzzy sets are determined by considering the value ranges used by
the Environmental Protection Agency standards as indicated in Table 3.

Table 3. The boundary values of crisp sets and fuzzy sets for output parameters, domain ranges, universe of discourse
membership function.

Input Variables Fuzzy Input Parameters Boundary Values for Universal Sets Universe of Discourse for MFs

KAQI
Good, Moderate, Sensitive, Un-
healthy, Very Unhealthy, Haz-
ardous

0–500 0–50, 51–100, 101–150, 151–200,
201–300, 301–500

In Table 4, the relationship between the input variables and output variables is
determined by the rule base.

The fuzzy associative memory method is used to map input fuzzy values to corre-
sponding output fuzzy sets in order to generate the inference rules. In this, the three
variables represented by the three fuzzy sets, a total of twenty-seven rules, are generated in
the following rule base: for 3 inputs (M) classified into 3 linguistic variables (N). M to the
power N rules (MN = 33) are generated. Rules are formed based on the highest values of
NO2, SO2 and PM2.5. To generate the rule base, we take into consideration all the pollutant
concentrations, that is, if one of the pollutants is high, then the resultant KAQI will be
Unhealthy, as clearly indicated in the rule base.
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Table 4. FIS Rule base for NO2, SO2, PM2.5.

Rule No. NO2 (ppb) SO2 (ppb) PM2.5 (µg/m3) KAQI

1 Low Low Low Good
2 Low Low Medium Moderate
3 Low Medium High Unhealthy
4 Low Medium Low Moderate
5 Low Medium Medium Sensitive
6 Low Medium High Very Unhealthy
7 Low High Low Unhealthy
8 Low High high Very Unhealthy
9 Medium High High Very Unhealthy
10 Medium Low Low Moderate
11 Medium Low Medium Sensitive
12 Medium Low High Unhealthy
13 Medium Medium Low Moderate
14 Medium Medium Medium Moderate
15 Medium Medium High Very Unhealthy
16 Medium High Low Very Unhealthy
17 Medium High Medium Very Unhealthy
18 Medium High High Hazardous
19 High Low Low Unhealthy
20 High Low Medium Unhealthy
21 High Low High Hazardous
22 High Medium Low Unhealthy
23 High Medium Medium Very Unhealthy
24 High Medium High Hazardous
25 High High Low Hazardous
26 High High Medium Hazardous
27 High High High Hazardous

3. Results
3.1. The Fuzzy Control System Design

As observed in Figure 3, the design of the fuzzy based air quality index prediction
model is designed using the Fuzzy Toolbox and the Mamdani FIS, integrated within the
MATLAB environment. It illustrates how different air pollutants affect the Air Quality Index.

Figure 3. Design of the Air Quality Index prediction model for NO2, SO2 and PM2.5 vs. KAQI.

3.2. Designs of the Input/Output Fuzzy Membership Functions

From Figure 3, illustration of the sample input/output designs for the fuzzy inference
systems variables and their respective membership functions plots are indicated.

In Figures 4–6 the triangular type membership function designed plots for NO2, SO2
and PM2.5 are indicated. For instance, Figure 4 illustrates the fuzzy inference system for
input variables for NO2 (Low, Medium, and High) and its corresponding membership
function plot. Additionally, the estimated KAQI as an output variable is illustrated in
Figure 7.
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Figure 4. NO2 input variable.

Figure 5. SO2 input variable.

Figure 6. PM2.5 input variable.

Figure 7. KAQI output variable.

3.3. Evaluation of the Proposed Fuzzy Based KAQI Prediction Model

In this section, the proposed fuzzy inference rules that were used in the output
evaluation of the proposed fuzzy based KAQI prediction model are captured as shown
in Figure 8. The “AND” connector is applied in designing the inference rules and it is
important in determining the minimum concentration levels of the estimated Air Quality
Index, given a set of fuzzy input parameters as already discussed.

In the model evaluation, all the fuzzy inference rules are considered to have an equal
weighted priority function (W = I). This means that all rules have equal priority during
model evaluation and therefore, the order does not matter.



Appl. Syst. Innov. 2021, 4, 44 10 of 14

Figure 8. MATLAB evaluation inference rules editor view design for NO2, SO2, PM2.5 vs. KAQI.

3.4. Rule and Surface Viewer

The rule viewer is used in the fuzzy inference diagram. It is used as a diagnostic
tool to see, for instance, which rules are active, or how individual membership function
influences the results.

Figure 9 shows how air pollutants NO2, SO2 and PM2.5 concentration levels greatly
affect the Kampala Air Quality Index in the rule view. For example, the figure demonstrates
the resultant Air Quality Index, given the concentration values of the air pollutants NO2,
SO2 and PM2.5; if NO2 = 30 ppb, SO2 = 50 ppb and PM2.5 = 20.9 µg/m3, then the predicted
KAQI = 27.

As indicated in Figure 10, the surface viewer is used to view the dependency of one
of the outputs on any one or two of the inputs, that is, it generates and plots an output
surface map for the model. In this case, the surface view shows how the output KAQI is
dependent on the air pollutant, NO2, SO2 and PM2.5, concentrations. A change in any of
the air pollutant concentrations affects the KAQI. The plot also shows the relation between
the air pollutants and the Air Quality Index and it is seen that when there is an increase in
any of the air pollutant input concentrations, there is an increase in the KAQI, irrespective
of the other values of the air pollutant values.

Figure 9. Active rules and Membership functions of input NO2, SO2, PM2.5 vs. output of KAQI.
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Figure 10. Surface view of the KAQI in Fuzzy Inference System.

3.5. Deffuzification to Crisp Sets

Deffuzification is the process of converting a fuzzified output into a single crisp value
with respect to the fuzzy set in order to generate a readable output. The defuzzified process
in the Fuzzy Inference System controller represents the action to be taken in controlling the
process. There are various defuzzification methods, and each outputs a different result. A
method is chosen depending on the nature of the problem that is being solved.

Therefore, in this study, the Center Of Gravity (COG) method is used because of
it being the most commonly used method among others, such as the mean of maxima
method, maximum membership principle method and weighted average method. COG
gives a more accurate result compared to the rest of the other methods because it finds the
value that corresponds to the center of gravity of the curve obtained [29].

To calculate the output crisp value in this work using the COG, assuming “Z” is
“C”, then the formula for the expression is formulated as follows, where Z is the final
output KAQI:

Z =

∫
µC(Z)Z dz∫
µC(Z) dz

(1)

Therefore, the defuzzified value of the output for the input values of SO2 = 30 ppb
NO2 = 50 ppb, and PM2.5 = 20.9 µg/m3 is the predicted KAQI = 27 as shown in Figure 9.

4. Discussion
Performance Evaluation of the Designed KAQI Prediction Model

After simulating and modeling the proposed model successfully, an evaluation per-
formance is carried out by a comparative analysis of prediction, using the conventional
method and the fuzzy logic based method.

To carry out the comparative analysis, first, the Air Quality Index is calculated based
on the linear interpolation formula below.

lp =
Ihigh − ILow

BPhigh − BPlow
(Cp − BPlow) + ILow (2)

where,
Ip = the index for pollutant p
Cp = is the monitored concentration of pollutant p
BPHigh = the breakpoint that is greater than or equal to Cp
BPLow = the breakpoint that is less than or equal to Cp
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IHigh = the AQI value corresponding to BPHigh
ILow = the AQI value corresponding to BPLow

The linear interpolation method is used for determining the short and long term air
quality indices, and it is used to estimate and predict unknown values for any geographic
point data, such as rainfall, noise pollution and air pollutant concentrations [30].

In this study, air pollutant values for NO2, SO2 and PM2.5 are picked randomly from
the data, which are collected from an open source and later used to test and evaluate the
model. For instance, if the value of NO2 is 290 ppb, SO2 is 350 ppb and PM2.5 is 300 µg/m3,
then, using the linear interpolation method to calculate the KAQI, each pollutant is calcu-
lated and the highest individual pollutant index out of them all represents the KAQI as
shown in the calculation below.

Index for polluntant NO2 = (300 − 201/360 − 101) × (290 − 101) + 201
= (99/259)×189 + 201
= 273

Index for polluntant SO2 = (500 − 301/604 − 305) × (350 − 305) + 301
= (199/299) × 45 + 301
= 331

Index for polluntant PM2.5 = (300 − 201/500.4 − 250.5)×(300 − 250.5) + 201
= (99/249.9) × 49.5 + 201
= 220.6

Therefore, KAQI becomes 331, whereas when the same data are fed into the Fuzzy Inference
System, the model produces the result of 361.

Table 5 shows some of the observations that are made to compare the logic and linear
interpolation method performance corresponding to SO2, NO2 and PM2.5 concentrations.
It is observed that fuzzy gives sastifactory results and this makes it a great approach to
significantly estimate the KAQI.

Table 5. Comparative Analysis of KAQI determined by fuzzy logic and linear interpolation methods corresponding to SO2,
NO2 and PM2.5 concentrations.

No. of Observations NO2.5 (ppb) SO2.4 (ppb) PM2.5 (µg/m3) KAQI Using Fuzzy Logic
Based Model

KAQI Using Linear Interpola-
tion Method

1 30 50 20.9 27 18
2 40 185 150 250 200
3 100 150 30.6 80 134
4 290 350 345 361 331

When a graph is plotted for further comparative analysis between fuzzy logic and
linear interpolation approaches to determine the KAQI, a strong correlation is observed
between both methods as shown in Figure 11.
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Figure 11. Comparative analysis of KAQI.

5. Conclusions

In this paper, KAQI prediction model based on the fuzzy logic inference system was
designed to predict the air quality for Kampala city, according to the air pollutant data
concentrations. It was observed that fuzzy logic algorithms are capable of determining the
Air Quality Index and therefore, can be used to predict and estimate the Air Quality Index
in real time, based on the given air pollutant concentrations. Hence, this can reduce the
effects of air pollution on both humans and the environment.
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